Solve the linear system of equations

$$x - 3y = -6$$

$$5x + 3y = 42$$

O_A)

Unique solution:

(6, 4)

OB)

Unique solution:

$$(6,-1)$$

Oc)

Infinitely many solutions:

$$(t, 8t + 7)$$

- OD) No solution
- Solve the linear system of equations

$$2x - 6y = 7$$

$$5x + 2y = 10$$

O_A)

Unique solution:

(8, 3)

OB)

Unique solution:

$$\left(\frac{37}{17}, -\frac{15}{34}\right)$$

Oc)

Infinitely many solutions:

$$(t, 6t+1)$$

- OD) No solution
- 3. Solve the linear system of equations

$$x + 16y = 9$$

$$\frac{1}{4}x + 4y = 8$$

OA)

Unique solution:

 \bigcirc B)

Unique solution:

$$(2, -4)$$

Oc)

Infinitely many solutions:

$$(t, 8t + 9)$$

OD) No solution

Solve the linear system of equations

$$3x - 2y = 7$$

$$9x - 6y = 14$$

O_A)

Unique solution:

$$(6,-4)$$

Ов)

Unique solution:

(8, 5)

Oc)

Infinitely many solutions:

$$(t, 8t+5)$$

OD) No solution

 Determine whether the system of linear equations has one and only one solution, infinitely many solutions, or no solution. Find all solutions whenever they exist.

$$x + 3y = 9$$

$$3x - y = 7$$

O_A)

one and only one solution

- (3, 2)
- OB)

one and only one solution

- (3,4)
- Oc)

one and only one solution

- (4, 2)
- OD)

Infinitely many solutions

- (9-3k,k)
- OE) no solution

Determine whether the system of linear equations has one and only one solution, infinitely many solutions, or no solution. Find all solutions whenever they exist.

$$2x - 5y = 10$$

$$4x - 10y = 20$$

- \bigcirc A) one and only one solution (0,-2)
- OB)

one and only one solution

- (5,0)
- Oc)

one and only one solution

$$\left(\frac{15}{2},1\right)$$

Op)

infinitely many solutions

$$\left(\frac{5}{2}k+5,k\right)$$

OE) no solution

Solve the linear system of equations

$$\frac{7}{4}x-\frac{5}{2}y=2$$

$$\frac{1}{4}x+\frac{7}{2}y=8$$

-	т.		
- (-)	A.	۰
_	J	А	

Unique solution:

$$(7,-4)$$

OB)

Unique solution:

Oc)

Infinitely many solutions:

$$(t, 6t+1)$$

OD) No solution

8.

Solve the linear system of equations

$$9x - 7y = 63$$

$$45x - 35y = 18$$

OA)

Unique solution:

$$(5, -4)$$

OB

Unique solution:

(3, 4)

Oc)

Infinitely many solutions:

$$(t, 8t+1)$$

OD) No solution

- **9.** A system composed of two linear equations must have at least one solution if the straight lines represented by these equations are nonparallel.
 - OA) false
 - OB) true
- 10.

Solve the linear system of equations

$$6x - 7y = 20$$

$$3x + 5y = -7$$

O_A)

Unique solution:

Unique solution:

$$(-9, 3)$$

Oc)

Infinitely many solutions:

$$(t, 4t+5)$$

OD) No solution

Indicate whether the matrix is in row-reduced form.

$$\begin{bmatrix} 1 & 0 & 7 \\ 0 & 1 & 5 \end{bmatrix}$$

- OA) The matrix is not in row-reduced form.
- OB) The matrix is in row-reduced form.

12.

Indicate whether the matrix is in row-reduced form.

$$\begin{bmatrix}
1 & 0 & 1 & 9 \\
0 & 1 & 0 & 8 \\
0 & 0 & -1 & 6
\end{bmatrix}$$

- OA) The matrix is in row-reduced form.
- OB) The matrix is not in row-reduced form.

13. Indicate whether the matrix is in row-reduced form.

$$\left[\begin{array}{c|cc}
1 & 0 & -12 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]$$

- OA) The matrix is not in row-reduced form.
- OB) The matrix is in row-reduced form.

Indicate whether the matrix is in row-reduced form.

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 2 & -3
\end{array}\right]$$

- OA) The matrix is in row-reduced form.
- OB) The matrix is not in row-reduced form.
- 15.

Indicate whether the matrix is in row-reduced form.

ſ				1
l	1	0	0	9
	0	1	0	6
l	0	0	0	2
١	0	0	1	8

- OA) The matrix is in row-reduced form.
- OB) The matrix is not in row-reduced form.
- 16.

Solve the system of linear equations using the Gauss-Jordan elimination method.

$$x - 2y = 8$$
$$3x + 4y = 4$$

- OA) (0, 2) OB) (8, 2)
- Oc)(4,-6)
- OD) (-2,4)
- OE)(4,-2)
- 17.

Solve the system of linear equations using the Gauss-Jordan elimination method.

$$3x + 2y = 14$$

$$x-4y=-14$$

- OA) (2,-14)
- Ов) (4, -14)
- Oc) (2,4)
- OD) (2, 16)
- OE) (4, -14)
- Solve the system of linear equations using the Gauss-Jordan elimination method.

$$7x + 5y = 32$$

$$-3x + y = -20$$

$$O_{A}(7,-3)$$

$$\bigcirc$$
B)(6,-2)

$$\bigcirc$$
E) (-7, -2)

19.

Solve the system of linear equations using the Gauss-Jordan elimination method.

$$3x + 3y + z = 22$$

$$x + z = 6$$

$$4y - 3z = 8$$

20.

Solve the system of linear equations, using the Gauss-Jordan elimination method.

$$2x + 5y - 2z = 14$$

$$5x - 6y + 2z = 0$$

$$4x - y + 3z = -7$$

$$\bigcirc A) x = 2, y = 6, z = 5$$

$$\bigcirc_{B)} x = 2, y = 5, z = -5$$

$$O_C$$
 $x = 2, y = 0, z = 5$

$$\bigcirc D) x = 2, y = 0, z = -5$$

$$O_E$$
) $x = 5, y = 0, z = -2$